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Abstract

Generalized eigenvectors (GEVs) between the class-conditional second moment
matrices have recently been shown to be a scalable and powerful technique for
feature learning, demonstrating state-of-the-art performance on a variety of do-
mains. However, the number of such features naturally scales with the square of
the number of classes k2, causing both statistical and computational inefficiencies
when k2 is large. This is a serious weakness of the basic GEV method in light
of ongoing interest in large-cardinality multiclass classification. We investigate
several methods for feature selection by picking class pairs, and demonstrate the
superiority of a novel approach that casts the problem as an adversarial saddle-
point problem, solvable with an efficient convex program.

1 Introduction

Convex approaches based on linear models have enjoyed great success, especially for problems in-
volving high-dimensional, sparse binary datasets [1, 2]. Nonconvex (but tractable) bilinear models
have also been used for large-cardinality output problems such as retrieval [3, 4] and recommenda-
tion systems [5]. For lower-dimensional dense datasets, such as those found in vision and speech
processing, there has been a renewed interest in joint learning of the predictor and the representation
(often in several layers). These techniques as implemented in deep neural networks have seen state
of the art performance in vision and speech [6, 7], including classification problems with very large
numbers of classes, such as object detection in ImageNet 22k [8].

Joint learning of the classifier and latent representation leads naturally to a nonconvex objective func-
tion, and direct optimization via gradient-based methods (such as backpropagation in a deep neural
network) can be difficult to tune and run into trouble with local minima and parallelization. To avoid
these robustness problems, generalized eigenvalue problems between pairs of class-conditional sec-
ond moment matrices have recently been introduced as an attractive solution to the problem of
discriminative feature learning [9]. GEV feature learning optimizes a non-convex objective, but
uses linear algebraic techniques to avoid local minima and enable distribution.

In [9] the authors propose an all-class-pairs feature-learning stage followed by a standard linear mul-
ticlass classifier. While the running time for the feature learning stage is independent of the number
of examples, it scales with the square of the number of classes k2, which can make them unsuit-
able for problems with large output spaces. In this paper, we develop a new method for choosing
class pairs for GEV features and demonstrate an improvement over strong baselines. Interestingly,
we also note good performance on the 1000-class ALOI [10] when using a number of pairs that is
even less than the number of classes k, indicating that the discriminative pair selection can uncover
features that generalize across classes.
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2 GEV Features

Generalized eigenvector features look at local maximizers v of the quotient

Rij(v) =
E[(v>x)2|y = i]

E[(v>x)2|y = j]
=
v>Civ

v>Cjv
(1)

where Ci and Cj are the covariance (or second moment) matrices conditioned on the ith or jth class.
That is, they find directions that capture most of the variance (or second moment) in one class iwhile
capturing very little in another class j, by solving the generalized eigenvalue problem Civ = λCjv.
The eigenvectors are local maximizers of (1) and the eigenvalues are the values of the objective.

For a space of dimension d, this allows us to extract up to d Cj-orthogonal features for each pair,
and to assess the feature’s discriminative power by examining the eigenvalue λ. These discrimi-
native directions v can then be combined with a simple nonlinearities (such as regression splines
max(t, v>x)) to provide a set of nonlinear features for the data.

In addition to working well in practice, these features have several desirable theoretical and practical
properties. Firstly, they are invariant to invertible linear transformations of the input data, and by
working directly with the second moment matrices, we require only an initial map-reduce style pass
to aggregate the moments over a large dataset. Finally, they should generalize well if the moments
can be correctly estimated, which generally should take O(d log d) examples per class [11].

3 Methods

We investigate several techniques for picking a parsimonious set of class pairs, including two base-
lines using randomization and the empirical confusion matrix, and a novel algorithm that that di-
rectly optimizes a variant of the original GEV objective function to select pairs.

3.1 Randomization

As introduced in [9] Section 4.3 we can place each class on a vertex of a random hypercube in
dlog ke dimensions. For each vertex we solve dlog ke GEV problems between the current vertex
and each of the immediate neighbors. The intuition is to create a graph with a single connected
component that connects every class to every other class with the fewest number of hops. However,
this does not take into account any information about which labels are easily confused with each
other. This multiple also leads to O(kdlog ke) pairs being picked, which can be prohibitively large
when the number of classes is large, so we also compare to a purely randomized approach on ALOI
and MNIST.

3.2 Confusion Matrix

A second natural approach is to use a confusion matrix to pick class pairs. Here we use the confusion
matrix from a linear least-squares model on the base feature set to get an asymmetric matrix of costs
A. For any given number of pairs N , we can get the top N pairs of classes with the highest costs
(excluding the diagonal, of course). The intuition here is that classes that are poorly discriminated
by the linear model are in need of nonlinear features that can be provided by the GEVs.

3.3 Adversarial GEV

Since our goal is to pick pairs that are most difficult to discriminate for the features, our approach is
to formulate a game for each class in which an adversary attempts to select an opposing class, and
we try to select a discriminative vector. Concretely, we formulate this as the following saddle-point
problem:

min
αi

max
v

v>(
∑
j 6=i αijCj)v

v>Civ

s.t.
∑
j

αij = 1, αij ≥ 0
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This objective can be solved efficiently and optimally with convex techniques using the bundle
method [12]. This amounts to making repeated calls to a vanilla GEV solver while changing mixture
weights. This process usually converges with a small number of calls to the GEV solver.

The output of this procedure is a matrix of dual variables αij , where each row corresponds to a fixed
denominator and each column corresponds to the mixture weights chosen by the adversary for that
numerator matrix. We can expect this approach to work better than the confusion matrix from a
linear model since it directly trades the GEV features off against one another, while the confusion
matrix may potentially become “unconfused” in many places by the addition of a single nonlinear
feature.

4 Related Work

Many feature extraction and dimensionality reduction techniques in machine learning can be for-
mulated as (generalized) eigenvalue problems, including PCA, Fisher’s LDA [13], VCA [14], and
variants thereof. A comparison of these methods with class-conditional GEV is given in Karampatzi-
akis and Mineiro [9]. The method is similar to a technique in time-series analysis called common
spatial pattern (CSP) [15], which finds GEVs between two windows of a multivariate signal.

Large-cardinality multiclass classification is an active research area. Some approaches rely on split-
ting the set of classes into trees recursively to avoid comparing dissimilar classes [16, 17]. Others
embed the labels in a low dimensional space and reason in the continuous space instead of the dis-
crete output set [4]. Other approaches, such as word embeddings trained as classifiers [18], also
jointly embed inputs and outputs. This work is most similar to these techniques that co-embed the
input and output spaces [18, 4], since it directly extends a base feature learning algorithm to select
features that are well suited to the output class distribution. However, our technique does not learn
vectors for the labels. While the adversarial technique in this paper is novel, the motivation is to
find a tractable relaxation of end-to-end supervised nonconvex feature learning, such as that done by
backpropagation [13].

5 Experiments

5.1 MNIST

We first compare the different methods for pair-picking on the MNIST dataset of handwritten digits
[19], consisting of 10 classes with 784 base pixel features. On this dataset, the number of classes
is small enough that the all-pairs approach for generating GEV features is tractable and gives the
best performance, so we do not provide a table of results. However, in Figure 1a we can see that
error decreases more rapidly when picking pairs using the supervised methods vs. the randomized
method, and that the adversarial method mostly dominates the other two.

5.2 TIMIT

We report results on the TIMIT speech-recognition dataset [20] of 183 classes (61 base phonemes
split into 3 segment markers), using size-11 windows of standard MFCC features (429 total features).
We treat this as a classification problem and score with accuracy, rather than evaluating the whole
sequence. We see in Figure 1c that using supervised methods to pick pairs works better than using
the randomized hypercube approach. However, in this case using the empirical confusion matrix
gives slightly better performance than the adversarial GEVs.

5.3 ALOI

Our largest-cardinality output space comes from the Amsterdam Library of Object Images (ALOI)
object classification dataset [10]. This consists of 1000 different classes, using 128 base features
derived from color histograms. Here we see that the supervised approaches significantly outperform
randomization, and adversarial GEV outperforms the confusion matrix approach for smaller num-
bers of pairs. This can be expected since the large output space gives appropriate pair-selection an
advantage over brute force randomization. The most interesting result here is the good empirical
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(a) MNIST: errors vs. number of class pairs. (b) ALOI: error % vs. number of class pairs.

Model Error # Feats
T-DSN [21] 40.9 –
Random GEV [9] 41.87 +/- 0.073 46713
Adversarial GEV 41.78 45009
Confusion GEV 41.65 46813

(c) TIMIT: the number of pairs was picked so as to give
approximately the same number of features as used in
Karampatziakis and Mineiro [9]. Performance of deep
neural network T-DSN included for comparison.

Model Error # Feats
Linear [17] 13.78 128
RBF [22] 7.0 –
Random GEV (2k) 5.08 4001
Adversarial GEV (2k) 3.81 4001
Confusion GEV (2k) 4.17 4001
Random GEV (3k) 4.61 6001
Adversarial GEV (3k) 3.82 6001
Confusion GEV (3k) 3.94 6001

(d) ALOI: the number of pairs picked appears in
parentheses where appropriate.

Figure 1: Comparison of pair-picking methods for MNIST, TIMIT, and ALOI.

performance even when we use fewer class pairs than the number of classes. This indicates that
the GEV features can help discriminate between more than just the two classes for which they were
chosen. As seen in Figure 1d, our absolute performance on this dataset is quite good, beating results
reported on the same features for the RBF kernel, as well as the linear baseline, by a significant
margin.

6 Conclusions and Future Work

We have presented techniques for scaling discriminative GEV features to high-cardinality label
space problems. GEV features have several theoretical and practical advantages, including good
guarantees on estimation error, scalability, global optimality, and strong empirical performance. Our
feature selection method builds on the linear algebraic techniques of the base GEV feature learning
algorithm to learn parsimonious sets of features, even with many classes, aiding generalization. We
demonstrate the performance of our method compared to natural baselines using randomization and
confusion matrices.

There are two clear directions for future work. The first is to test our algorithms on more challenging
datasets, such as ImageNet 1k and 22k [8]. The second is to extend our method to incorporate tree
structures over the label space, and learn GEVs between clusters of labels. This could aid prediction
and estimation for problems where even the sparse pair selection used by our method is intractable.
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